Posted By: NITRC ADMIN - Jun 3, 2012
Tool/Resource: Neuroinformatics - The Journal
 

Abstract  
Neuroscientists are developing new imaging techniques and generating large volumes of data in an effort to understand the complex structure of the nervous system. The complexity and size of this data makes human interpretation a labor-intensive task. To aid in the analysis, new segmentation techniques for identifying neurons in these feature rich datasets are required. This paper presents a method for neuron boundary detection and nonbranching process segmentation in electron microscopy images and visualizing them in three dimensions. It combines both automated segmentation techniques with a graphical user interface for correction of mistakes in the automated process. The automated process first uses machine learning and image processing techniques to identify neuron membranes that deliniate the cells in each two-dimensional section. To segment nonbranching processes, the cell regions in each two-dimensional section are connected in 3D using correlation of regions between sections. The combination of this method with a graphical user interface specially designed for this purpose, enables users to quickly segment cellular processes in large volumes.

  • Content Type Journal Article
  • Category Original Article
  • Pages 1-25
  • DOI 10.1007/s12021-012-9149-y
  • Authors
    • Elizabeth Jurrus, Scientific Computing and Imaging Institute, University of Utah, 72 S Central Campus Drive, Salt Lake City, UT 84112, USA
    • Shigeki Watanabe, Department of Biology, University of Utah, Salt Lake City, UT, USA
    • Richard J. Giuly, National Center for Microscopy and Imaging Research, University of California, San Diego, CA, USA
    • Antonio R. C. Paiva, Scientific Computing and Imaging Institute, University of Utah, 72 S Central Campus Drive, Salt Lake City, UT 84112, USA
    • Mark H. Ellisman, National Center for Microscopy and Imaging Research, University of California, San Diego, CA, USA
    • Erik M. Jorgensen, Department of Biology, University of Utah, Salt Lake City, UT, USA
    • Tolga Tasdizen, Scientific Computing and Imaging Institute, University of Utah, 72 S Central Campus Drive, Salt Lake City, UT 84112, USA


Link to Original Article
RSS Feed Monitor in Slack
Latest News

This news item currently has no comments.