Posted By: NITRC ADMIN - Apr 16, 2012
Tool/Resource: Neuroinformatics - The Journal
 

Abstract  
We present a novel probabilistic approach to fully automated delineation of tree structures in noisy 2D images and 3D image stacks. Unlike earlier methods that rely mostly on local evidence, ours builds a set of candidate trees over many different subsets of points likely to belong to the optimal tree and then chooses the best one according to a global objective function that combines image evidence with geometric priors. Since the best tree does not necessarily span all the points, the algorithm is able to eliminate false detections while retaining the correct tree topology. Manually annotated brightfield micrographs, retinal scans and the DIADEM challenge datasets are used to evaluate the performance of our method. We used the DIADEM metric to quantitatively evaluate the topological accuracy of the reconstructions and showed that the use of the geometric regularization yields a substantial improvement.

  • Content Type Journal Article
  • Category Original Article
  • Pages 279-302
  • DOI 10.1007/s12021-011-9122-1
  • Authors
    • Engin Türetken, Computer Vision Laboratory, Faculté Informatique et Communications, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
    • Germán González, Computer Vision Laboratory, Faculté Informatique et Communications, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
    • Christian Blum, ALBCOM, Dept. Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya, Jordi Girona 1–3, Omega 112 Campus Nord, 08034 Barcelona, Spain
    • Pascal Fua, Computer Vision Laboratory, Faculté Informatique et Communications, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland


Link to Original Article
RSS Feed Monitor in Slack
Latest News

This news item currently has no comments.